Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Epilepsia ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686942

RESUMO

The identification of the epileptogenic zone (EZ) boundaries is crucial for effective focal epilepsy surgery. We verify the value of a neurophysiological biomarker of focal ictogenesis, characterized by a low-voltage fast-activity ictal pattern (chirp) recorded with intracerebral electrodes during invasive presurgical monitoring (stereoelectroencephalography [SEEG]). The frequency content of SEEG signals was retrospectively analyzed with semiautomatic software in 176 consecutive patients with focal epilepsies that either were cryptogenic or presented with discordant anatomoelectroclinical findings. Fast activity seizure patterns with the spectrographic features of chirps were confirmed by computer-assisted analysis in 95.4% of patients who presented with heterogeneous etiologies and diverse lobar location of the EZ. Statistical analysis demonstrated (1) correlation between seizure outcome and concordance of sublobar regions included in the EZ defined by visual analysis and chirp-generating regions, (2) high concordance in contact-by contact analysis of 68 patients with Engel class Ia outcome, and (3) that discordance between chirp location and the visually outlined EZ correlated with worse seizure outcome. Seizure outcome analysis confirms the fast activity chirp pattern is a reproducible biomarker of the EZ in a heterogeneous group of patients undergoing SEEG.

2.
Proc Natl Acad Sci U S A ; 121(17): e2319607121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635635

RESUMO

The development of seizures in epilepsy syndromes associated with malformations of cortical development (MCDs) has traditionally been attributed to intrinsic cortical alterations resulting from abnormal network excitability. However, recent analyses at single-cell resolution of human brain samples from MCD patients have indicated the possible involvement of adaptive immunity in the pathogenesis of these disorders. By exploiting the MethylAzoxyMethanol (MAM)/pilocarpine (MP) rat model of drug-resistant epilepsy associated with MCD, we show here that the occurrence of status epilepticus and subsequent spontaneous recurrent seizures in the malformed, but not in the normal brain, are associated with the outbreak of a destructive autoimmune response with encephalitis-like features, involving components of both cell-mediated and humoral immune responses. The MP brain is characterized by blood-brain barrier dysfunction, marked and persisting CD8+ T cell invasion of the brain parenchyma, meningeal B cell accumulation, and complement-dependent cytotoxicity mediated by antineuronal antibodies. Furthermore, the therapeutic treatment of MP rats with the immunomodulatory drug fingolimod promotes both antiepileptogenic and neuroprotective effects. Collectively, these data show that the MP rat could serve as a translational model of epileptogenic cortical malformations associated with a central nervous system autoimmune response. This work indicates that a preexisting brain maldevelopment predisposes to a secondary autoimmune response, which acts as a precipitating factor for epilepsy and suggests immune intervention as a therapeutic option to be further explored in epileptic syndromes associated with MCDs.


Assuntos
Epilepsia , Acetato de Metilazoximetanol/análogos & derivados , Pilocarpina , Ratos , Humanos , Animais , Autoimunidade , Epilepsia/induzido quimicamente , Epilepsia/patologia , Convulsões/patologia , Encéfalo/patologia , Modelos Animais de Doenças
3.
Epilepsia ; 65(5): 1333-1345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400789

RESUMO

OBJECTIVE: Benchmarking has been proposed to reflect surgical quality and represents the highest standard reference values for desirable results. We sought to determine benchmark outcomes in patients after surgery for drug-resistant mesial temporal lobe epilepsy (MTLE). METHODS: This retrospective multicenter study included patients who underwent MTLE surgery at 19 expert centers on five continents. Benchmarks were defined for 15 endpoints covering surgery and epilepsy outcome at discharge, 1 year after surgery, and the last available follow-up. Patients were risk-stratified by applying outcome-relevant comorbidities, and benchmarks were calculated for low-risk ("benchmark") cases. Respective measures were derived from the median value at each center, and the 75th percentile was considered the benchmark cutoff. RESULTS: A total of 1119 patients with a mean age (range) of 36.7 (1-74) years and a male-to-female ratio of 1:1.1 were included. Most patients (59.2%) underwent anterior temporal lobe resection with amygdalohippocampectomy. The overall rate of complications or neurological deficits was 14.4%, with no in-hospital death. After risk stratification, 377 (33.7%) benchmark cases of 1119 patients were identified, representing 13.6%-72.9% of cases per center and leaving 742 patients in the high-risk cohort. Benchmark cutoffs for any complication, clinically apparent stroke, and reoperation rate at discharge were ≤24.6%, ≤.5%, and ≤3.9%, respectively. A favorable seizure outcome (defined as International League Against Epilepsy class I and II) was reached in 83.6% at 1 year and 79.0% at the last follow-up in benchmark cases, leading to benchmark cutoffs of ≥75.2% (1-year follow-up) and ≥69.5% (mean follow-up of 39.0 months). SIGNIFICANCE: This study presents internationally applicable benchmark outcomes for the efficacy and safety of MTLE surgery. It may allow for comparison between centers, patient registries, and novel surgical and interventional techniques.


Assuntos
Benchmarking , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/cirurgia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Estudos Retrospectivos , Idoso , Resultado do Tratamento , Criança , Pré-Escolar , Lactente , Complicações Pós-Operatórias/epidemiologia , Procedimentos Neurocirúrgicos/normas , Procedimentos Neurocirúrgicos/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Lobectomia Temporal Anterior/métodos
4.
Neurol Sci ; 44(12): 4451-4463, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37458845

RESUMO

OBJECTIVE: Encephaloceles (ENCs) may cause clinical complications, including drug-resistant epilepsy that can be cured with epilepsy surgery. METHODS: We describe clinical, diagnostic, and neuropathological findings of 12 patients with temporal ENC and epilepsy evaluated for surgery and compare them with a control group of 26 temporal lobe epilepsy (TLE) patients. RESULTS: Six patients had unilateral and 6 bilateral temporal ENCs. Compared to TLEs, ENCs showed i) later epilepsy onset, ii) higher prevalence of psychiatric comorbidities, iii) no history of febrile convulsions, and iv) ictal semiology differences. Seven patients had MRI signs of gliosis, and 9 of intracranial hypertension. Interictal EEG analysis in ENCs demonstrated significant differences with controls: prominent activity in the beta/gamma frequency bands in frontal regions, interictal short sequences of low-voltage fast activity, and less frequent and more localized interictal epileptiform discharges. Ictal EEG patterns analyzed in 9 ENCs showed delayed and slower contralateral spread compared to TLEs. All ENCs that underwent surgery (7 lobectomies and 1 lesionectomy) are in Engel class I. Neuropathological examination revealed 4 patterns: herniated brain fragments, focal layer I distortion, white matter septa extending into the cortex, and altered gyral profile. CONCLUSIONS AND SIGNIFICANCE: The described peculiarities might help clinicians to suspect the presence of largely underdiagnosed ENCs.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Eletroencefalografia/métodos , Encefalocele/complicações , Encefalocele/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Neuroimagem , Imageamento por Ressonância Magnética/métodos
5.
Brain Pathol ; 33(3): e13141, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36564349

RESUMO

Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance. Data from Type II FCD were compared with those obtained in focal epilepsies with different etiologies. Neocortical tissues were collected from 20 subjects, mainly adults with a mean age at surgery of 31 years, admitted to epilepsy surgery with a neuropathological diagnosis of: cryptogenic, temporal lobe epilepsy with hippocampal sclerosis, and Type IIa/b FCD. Dendritic spine density quantitation, evaluated in a previous paper using Golgi impregnation, was available in a subgroup. Immunohistochemistry, in situ hybridization, electron microscopy, and organotypic cultures were utilized to study complement/microglial activation patterns. FCD Type II samples presenting dendritic spine loss were characterized by an activation of the classical complement pathway and microglial reactivity. In the same samples, a close relationship between microglial cells and dendritic segments/synapses was found. These features were consistently observed in Type IIb FCD and in 1 of 3 Type IIa cases. In other patient groups and in perilesional areas outside the dysplasia, not presenting spine loss, these features were not observed. In vitro treatment with complement proteins of organotypic slices of cortical tissue with no sign of FCD induced a reduction in dendritic spine density. These data suggest that dysregulation of the complement system plays a role in microglia-mediated spine loss. This mechanism, known to be involved in the removal of redundant synapses during development, is likely reactivated in Type II FCD, particularly in Type IIb; local treatment with anticomplement drugs could in principle modify the course of disease in these patients.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Displasia Cortical Focal , Malformações do Desenvolvimento Cortical , Adulto , Humanos , Espinhas Dendríticas/patologia , Via Clássica do Complemento , Malformações do Desenvolvimento Cortical/patologia , Epilepsia/patologia , Epilepsia Resistente a Medicamentos/patologia
6.
Epilepsy Behav Rep ; 20: 100564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132992

RESUMO

During a presurgical workup, when discordant structural and electroclinical localization is identified, further evaluation with invasive EEG is often necessary. We report a 44-year-old right-handed woman without significant risk factors for epilepsy who presented at 11 years of age with focal seizures manifest as jerking of the left side of her mouth and arm with frequent evolution to bilateral tonic-clonic seizures during sleep with a weekly frequency. During video-EEG monitoring, we observed interictal left fronto-central sharp waves and some independent sharp waves in the right fronto-central region. Habitual seizures were recorded and during the post-ictal state, the patient had left arm weakness for a few minutes. The ictal discharge on EEG was characterized by a bilateral fronto-central rhythmic slow activity more prevalent over the right hemisphere. MRI of the brain revealed a left precentral structural lesion. Considering the discordant structural and electroclinical information, we performed bilateral fronto-central stereo-EEG implantation and demonstrated clear right fronto-central seizure onset. Stereo-EEG-guided radiofrequency thermocoagulation was performed in the right fronto-central leads with subsequent seizure freedom for 9 months. The patient then underwent surgery (right fronto-central cortectomy), and histology revealed focal cortical dysplasia type Ia. The post-surgical outcome was Engel Ia. This case underscores the presence of a structural lesion is not sufficient to define the epileptogenic zone if not supported by clinical and EEG evidence. In such cases, an invasive investigation is typically required.

7.
Neurotherapeutics ; 19(6): 1942-1950, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36129603

RESUMO

Hypothermia is a promising therapeutic strategy for severe vasospasm and other types of non-thrombotic cerebral ischemia, but its clinical application is limited by significant systemic side effects. We aimed to develop an intraventricular device for the controlled cooling of the cerebrospinal fluid, to produce a targeted hypothermia in the affected cerebral hemisphere with a minimal effect on systemic temperature. An intraventricular cooling device (acronym: V-COOL) was developed by in silico modelling, in vitro testing, and in vivo proof-of-concept application in healthy Wistar rats (n = 42). Cerebral cortical temperature, rectal temperature, and intracranial pressure were monitored at increasing flow rate (0.2 to 0.8 mL/min) and duration of application (10 to 60 min). Survival, neurological outcome, and MRI volumetric analysis of the ventricular system were assessed during the first 24 h. The V-COOL prototyping was designed to minimize extra-cranial heat transfer and intra-cranial pressure load. In vivo application of the V-COOL device produced a flow rate-dependent decrease in cerebral cortical temperature, without affecting systemic temperature. The target degree of cerebral cooling (- 3.0 °C) was obtained in 4.48 min at the flow rate of 0.4 mL/min, without significant changes in intracranial pressure. Survival and neurological outcome at 24 h showed no significant difference compared to sham-treated rats. MRI study showed a transient dilation of the ventricular system (+ 38%) in a subset of animals. The V-COOL technology provides an effective, rapid, selective, and safe cerebral cooling to a clinically relevant degree of - 3.0 °C.


Assuntos
Hipotermia Induzida , Hipotermia , Animais , Ratos , Temperatura Corporal , Ratos Wistar , Bioengenharia , Encéfalo
8.
Elife ; 112022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916367

RESUMO

Human and animal EEG data demonstrate that focal seizures start with low-voltage fast activity, evolve into rhythmic burst discharges and are followed by a period of suppressed background activity. This suggests that processes with dynamics in the range of tens of seconds govern focal seizure evolution. We investigate the processes associated with seizure dynamics by complementing the Hodgkin-Huxley mathematical model with the physical laws that dictate ion movement and maintain ionic gradients. Our biophysically realistic computational model closely replicates the electrographic pattern of a typical human focal seizure characterized by low voltage fast activity onset, tonic phase, clonic phase and postictal suppression. Our study demonstrates, for the first time in silico, the potential mechanism of seizure initiation by inhibitory interneurons via the initial build-up of extracellular K+ due to intense interneuronal spiking. The model also identifies ionic mechanisms that may underlie a key feature in seizure dynamics, that is, progressive slowing down of ictal discharges towards the end of seizure. Our model prediction of specific scaling of inter-burst intervals is confirmed by seizure data recorded in the whole guinea pig brain in vitro and in humans, suggesting that the observed termination pattern may hold across different species. Our results emphasize ionic dynamics as elementary processes behind seizure generation and indicate targets for new therapeutic strategies.


Assuntos
Eletroencefalografia , Convulsões , Animais , Encéfalo , Eletroencefalografia/métodos , Retroalimentação , Cobaias , Humanos , Interneurônios
10.
Neurology ; 98(17): e1771-e1782, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35256485

RESUMO

BACKGROUND AND OBJECTIVES: The identification of possible hippocampal alterations is a crucial point for the diagnosis and therapy of patients with unilateral temporal lobe epilepsy (TLE). This study aims to investigate the role of neurite orientation dispersion and density imaging (NODDI) compared to diffusion tensor imaging (DTI) in the comprehension of hippocampal microstructure in TLE. METHODS: DTI and NODDI metrics were calculated in the hippocampi of adult patients with TLE, with and without histology-confirmed hippocampal sclerosis (HS), and in age/sex-matched healthy controls (HC). Diffusion metrics and hippocampal volumes of the pathologic side were compared within participants and between participants among the HS, non-HS, and HC groups. Diffusion metrics were also correlated with hippocampal volume and patients' clinical features. After surgery, hippocampal specimens were processed for neuropathology examinations. RESULTS: Fifteen patients with TLE (9 with and 6 without HS) and 11 HC were included. Hippocampal analyses resulted in a significant increase in fractional anisotropy (FA) and mean diffusivity (MD; mm2/s × 10-3) and decrease in orientation dispersion index (ODI) comparing the pathologic side of patients with HS and their relative nonpathologic side (0.203 vs 0.183, 0.825 vs 0.724, 0.366 vs 0.443, respectively), the pathologic side of patients without HS (0.203 vs 0.169, 0.825 vs 0.745, 0.366 vs 0.453, respectively), and HC (0.203 vs 0.172, 0.825 vs 0.729, 0.366 vs 0.447, respectively). Moreover, neurite density (ND) was significantly decreased comparing both hippocampi of patients with HS (0.416 vs 0.460). A significant increase in free-water isotropic volume fraction (fiso) was found in the comparison of pathologic hippocampi of patients with HS and nonpathologic hippocampi of patients with HS (0.323 vs 0.258) and HC (0.323 vs 0.226). Hippocampal volume of all patients with TLE negatively correlated with MD (r = -0.746, p = 0.0145) and positively correlated with ODI (r = 0.719, p = 0.0145). Fiso and ND of sclerotic hippocampi positively correlated with disease duration (r = 0.684, p = 0.0424 and r = 0.670, p = 0.0486, respectively). Immunohistochemistry in sclerotic hippocampal specimens revealed neuronal loss in the pyramidal layer and fiber reorganization at the level of stratum lacunosum-moleculare, confirming ODI and ND metrics. DISCUSSION: This study shows the capability of diffusion MRI metrics to detect hippocampal microstructural alterations. Among them, ODI seems to better highlight the fiber reorganization observed by neuropathology in sclerotic hippocampi.


Assuntos
Epilepsia do Lobo Temporal , Adulto , Atrofia/patologia , Imagem de Tensor de Difusão/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Neuritos , Esclerose/diagnóstico por imagem , Esclerose/patologia
11.
Front Neurol ; 12: 782666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966349

RESUMO

Introduction: Optimizing patient safety and quality improvement is increasingly important in surgery. Benchmarks and clinical quality registries are being developed to assess the best achievable results for several surgical procedures and reduce unwarranted variation between different centers. However, there is no clinical database from international centers for establishing standardized reference values of patients undergoing surgery for mesial temporal lobe epilepsy. Design: The Enhancing Safety in Epilepsy Surgery (EASINESS) study is a retrospectively conducted, multicenter, open registry. All patients undergoing mesial temporal lobe epilepsy surgery in participating centers between January 2015 and December 2019 are included in this study. The patient characteristics, preoperative diagnostic tools, surgical data, postoperative complications, and long-term seizure outcomes are recorded. Outcomes: The collected data will be used for establishing standardized reference values ("benchmarks") for this type of surgical procedure. The primary endpoints include seizure outcomes according to the International League Against Epilepsy (ILAE) classification and defined postoperative complications. Discussion: The EASINESS will define robust and standardized outcome references after amygdalohippocampectomy for temporal lobe epilepsy. After the successful definition of benchmarks from an international cohort of renowned centers, these data will serve as reference values for the evaluation of novel surgical techniques and comparisons among centers for future clinical trials. Clinical trial registration: This study is indexed at clinicaltrials.gov (NT 04952298).

12.
Epilepsia ; 62(7): 1715-1728, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34061984

RESUMO

OBJECTIVE: The influx of immune cells and serum proteins from the periphery into the brain due to a dysfunctional blood-brain barrier (BBB) has been proposed to contribute to the pathogenesis of seizures in various forms of epilepsy and encephalitis. We evaluated the pathophysiological impact of activated peripheral blood mononuclear cells (PBMCs) and serum albumin on neuronal excitability in an in vitro brain preparation. METHODS: A condition of mild endothelial activation induced by arterial perfusion of lipopolysaccharide (LPS) was induced in the whole brain preparation of guinea pigs maintained in vitro by arterial perfusion. We analyzed the effects of co-perfusion of human recombinant serum albumin with human PBMCs activated with concanavalin A on neuronal excitability, BBB permeability (measured by FITC-albumin extravasation), and microglial activation. RESULTS: Bioplex analysis in supernatants of concanavalin A-stimulated PBMCs revealed increased levels of several inflammatory mediators, in particular interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, interferon (INF)-γ, IL-6, IL-10, IL-17A, and MIP3α. LPS and human albumin arterially co-perfused with either concanavalin A-activated PBMCs or the cytokine-enriched supernatant of activated PBMCs (1) modulated calcium-calmodulin-dependent protein kinase II at excitatory synapses, (2) enhanced BBB permeability, (3) induced microglial activation, and (4) promoted seizure-like events. Separate perfusions of either nonactivated PBMCs or concanavalin A-activated PBMCs without LPS/human albumin (hALB) failed to induce inflammatory and excitability changes. SIGNIFICANCE: Activated peripheral immune cells, such as PBMCs, and the extravasation of serum proteins in a condition of BBB impairment contribute to seizure generation.


Assuntos
Leucócitos Mononucleares , Convulsões/sangue , Animais , Barreira Hematoencefálica/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Concanavalina A , Citocinas/sangue , Eletrodos Implantados , Endotélio Vascular/patologia , Cobaias , Humanos , Imunidade Celular , Mediadores da Inflamação/sangue , Ativação de Macrófagos , Microglia/imunologia , Microglia/patologia , Neurônios/efeitos dos fármacos , Fluxo Sanguíneo Regional , Convulsões/patologia , Albumina Sérica/farmacologia , Baço/irrigação sanguínea
14.
Brain ; 144(1): 251-265, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33221837

RESUMO

Neuronal dendritic arborizations and dendritic spines are crucial for a normal synaptic transmission and may be critically involved in the pathophysiology of epilepsy. Alterations in dendritic morphology and spine loss mainly in hippocampal neurons have been reported both in epilepsy animal models and in human brain tissues from patients with epilepsy. However, it is still unclear whether these dendritic abnormalities relate to the cause of epilepsy or are generated by seizure recurrence. We investigated fine neuronal structures at the level of dendritic and spine organization using Golgi impregnation, and analysed synaptic networks with immunohistochemical markers of glutamatergic (vGLUT1) and GABAergic (vGAT) axon terminals in human cerebral cortices derived from epilepsy surgery. Specimens were obtained from 28 patients with different neuropathologically defined aetiologies: type Ia and type II focal cortical dysplasia, cryptogenic (no lesion) and temporal lobe epilepsy with hippocampal sclerosis. Autoptic tissues were used for comparison. Three-dimensional reconstructions of Golgi-impregnated neurons revealed severe dendritic reshaping and spine alteration in the core of the type II focal cortical dysplasia. Dysmorphic neurons showed increased dendritic complexity, reduction of dendritic spines and occasional filopodia-like protrusions emerging from the soma. Surprisingly, the intermingled normal-looking pyramidal neurons also showed severe spine loss and simplified dendritic arborization. No changes were observed outside the dysplasia (perilesional tissue) or in neocortical postsurgical tissue obtained in the other patient groups. Immunoreactivities of vGLUT1 and vGAT showed synaptic reorganization in the core of type II dysplasia characterized by the presence of abnormal perisomatic baskets around dysmorphic neurons, in particular those with filopodia-like protrusions, and changes in vGLUT1/vGAT expression. Ultrastructural data in type II dysplasia highlighted the presence of altered neuropil engulfed by glial processes. Our data indicate that the fine morphological aspect of neurons and dendritic spines are normal in epileptogenic neocortex, with the exception of type II dysplastic lesions. The findings suggest that the mechanisms leading to this severe form of cortical malformation interfere with the normal dendritic arborization and synaptic network organization. The data argue against the concept that long-lasting epilepsy and seizure recurrence per se unavoidably produce a dendritic pathology.


Assuntos
Córtex Cerebral/ultraestrutura , Dendritos/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Epilepsia/patologia , Sinapses/ultraestrutura , Adolescente , Adulto , Córtex Cerebral/metabolismo , Pré-Escolar , Humanos , Lactente , Microscopia Eletrônica , Pessoa de Meia-Idade , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Adulto Jovem
15.
Clin Neurol Neurosurg ; 198: 106188, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32956988

RESUMO

INTRODUCTION: Focal Cortical Dysplasia (FCD) represents a broad spectrum of histopathological entities that cause drug-resistant epilepsy. Surgery has been shown to be the treatment of choice, but incomplete resection represents the leading cause of seizure persistence. Preliminary experiences with intraoperative ultrasound (ioUS) have proven its potential in defining and characterizing the lesion. In this study we analyzed the feasibility of advanced ultrasound techniques such as sono-elastography (SE) and contrast enhancement ultrasound (CEUS) in a small cohort of patients with FCD. MATERIAL AND METHODS: We retrospectively reviewed all clinical records and images of patients with drug resistant epilepsy who underwent at least one advanced sonographic technique (SE and/or CEUS) during ioUS guided surgery between November 2014 and October 2017. We excluded from our analysis all patients with lesions other than FCD or those who had FCD associated with other pathological entities. RESULTS: Four patients with type IIb FCD in the right frontal lobe were evaluated. All of them underwent SE, which highlighted heterogeneous stiffness in the dysplastic foci, also multiple areas of higher consistency were detected in all patients. Three patients evaluated with CEUS had visible enhancement in the FCD. Neither SE nor CEUS were better than ioUS in the identification of lesion boundaries. In the three patients who underwent both SE and CEUS we found no correspondence between stiffer areas and enhancement in the dysplastic areas. CONCLUSION: Ourpreliminary report confirms the feasibility of SE and CEUS in FCD surgery and describes the imaging findings in this category of patients. Studies on larger cohorts of patients are warranted to better clarify the role of these advanced intraoperative ultrasound techniques in patients with FCD.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Monitorização Neurofisiológica Intraoperatória/métodos , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico por imagem , Malformações do Desenvolvimento Cortical do Grupo I/cirurgia , Ultrassonografia de Intervenção/métodos , Adolescente , Adulto , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
16.
Epilepsy Behav ; 110: 107170, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512366

RESUMO

OBJECTIVE: The current study aimed to describe quality of life (QoL) levels, psychiatric symptoms prevalence, and perceived stigma levels in persons with either drug-resistant epilepsy (DRE) or drug-sensitive epilepsy (DSE) and in persons with epilepsy (PwE) with DRE that underwent epilepsy surgery (DREES). METHODS: Persons with epilepsy diagnosed as having DRE according to International League Against Epilepsy (ILAE) criteria, DSE, and DREES were enrolled at the Epilepsy Unit of the Neurological Institute Carlo Besta of Milan. Sociodemographic and clinical data, Quality of Life in Epilepsy Inventory (QOLIE-31), Symptom Checklist-90 (SCL-90), and the Epilepsy Stigma Scale (ESS) were collected based on self-reported information and on medical records. RESULTS: Sociodemographic, medical, and psychological data were obtained from 181 PwE: 80 with DRE, 31 with DSE, and 70 with DREES. We found that QoL is higher and psychiatric symptoms are lower in persons with DSE compared with DRE and that patients with DREES, who were drug-resistant before surgery, are in between DSE and DRE for both measures. Perceived stigma level is different in DSE and in DRE, that report the highest levels of stigma, and is between the other two groups in DREES. SIGNIFICANCE: This study suggests that low QoL levels and high psychiatric symptoms prevalence in drug-resistant PwE may be significantly improved after epilepsy surgery and suggests the importance of a biopsychosocial approach when planning therapeutic intervention.


Assuntos
Epilepsia/psicologia , Transtornos Mentais/psicologia , Percepção , Qualidade de Vida/psicologia , Estigma Social , Adulto , Estudos Transversais , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/epidemiologia , Epilepsia Resistente a Medicamentos/psicologia , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Feminino , Humanos , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/epidemiologia , Pessoa de Meia-Idade , Percepção/fisiologia , Prevalência
17.
Epilepsy Res ; 165: 106401, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32599416

RESUMO

Adenosine (ADO) is an endogenous modulator of neuronal excitability, with anticonvulsant and neuroprotective effects. It has been proposed that the activity-dependent release of ADO promoted by the extracellular acidification occurring during seizures contributes to seizure termination. To verify this hypothesis, we recorded field potentials, pH and ADO changes measured with enzymatic biosensors during acute focal seizures in the medial entorhinal cortex (mEC) of the isolated guinea-pig brain maintained in vitro. The effect of ADO on seizure-like events (SLEs) induced by GABAa receptor antagonism with bicuculline methiodide (BMI; 50 µM) was assessed by arterial applications of 1 mM ADO. ADO either reduced or prevented epileptiform activity. The A1 receptor antagonist DPCPX (100-500 µM) prolonged BMI-induced seizures and was able to precipitate SLEs in the absence of proconvulsant. Simultaneous recordings of brain activity, extracellular ADO and pH shifts demonstrated that ADO decreases at the onset and progressively rises toward the end of SLEs induced by either BMI or 4-aminopyridine (4AP; 50 µM), reaching maximal values 1-5 min after SLE termination. ADO changes were preceded by a SLE-dependent extracellular acid shift. Both pH acidification and ADO changes were abolished by 22 mM HEPES in the arterial perfusate. In these conditions, SLE duration was prolonged. Our data confirm that ADO plays a role in regulating brain excitability. Its increase depends on seizure-induced acid pH shift and it is maximal after the end of the SLE. These findings strongly suggest that ADO contributes to termination of focal seizures and to the establishment of the postictal depression.


Assuntos
Adenosina/metabolismo , Córtex Entorrinal/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Convulsões/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Cobaias , Convulsões/tratamento farmacológico
18.
J Neurol Sci ; 413: 116865, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32371280

RESUMO

We report the case of a 68-year-old man who presented with ataxia, insomnia, rapidly developing cognitive decline, seizures and small vessel vasculitis. Both serum and cerebro-spinal fluid samples showed positive titre of anti-CASPR2 antibodies. Limbic encephalitis was diagnosed and immunomodulatory therapy was started with benefit. After one-year follow-up, the patient relapsed with a difficult-to-treat respiratory failure, brainstem involvement, neuropathic pain and severe dysautonomia with esophageal dysfunction. We discuss here the occurrence of life-threating complication such as respiratory dysfunction in CASPR2 limbic encephalitis. Furthermore, we showed different phenotype and treatment response during disease onset compared to relapse. This case expands the clinical spectrum of anti-CASPR2 associated disease, underlying the need for respiratory and sleep evaluation.


Assuntos
Encefalite Límbica , Insuficiência Respiratória , Idoso , Autoanticorpos/metabolismo , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/metabolismo , Humanos , Encefalite Límbica/complicações , Encefalite Límbica/tratamento farmacológico , Masculino , Proteínas de Membrana , Recidiva Local de Neoplasia , Proteínas do Tecido Nervoso , Insuficiência Respiratória/etiologia
19.
Front Pharmacol ; 11: 181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180728

RESUMO

Antiepileptic drug-resistance is a major health problem in patients with cortical dysplasia (CD). Whether drug-resistant epilepsy is associated with progressive brain damage is still debated. We previously generated a rat model of acquired CD, the methylazoxymethanol-pilocarpine (MP) rat, in which the occurrence of status epilepticus and subsequent spontaneous seizures induce progressive brain damage (Nobili et al., 2015). The present study tested the outcome of early-chronic carbamazepine (CBZ) administration on both seizure activity and brain damage in MP rats. We took advantage of the non-invasive CBZ-in-food administration protocol, established by Ali (2012), which proved effective in suppressing generalized convulsive seizures in kainic acid rat model of epilepsy. MP rats were treated immediately after the onset of the first spontaneous seizure with 300 mg/kg/day CBZ formulated in pellets for a two-months-trial. CBZ-treated rats were continuously video-monitored to detect seizure activity and were compared with untreated epileptic MP rats. Despite CBZ serum levels in treated rats were within the suggested therapeutic range for humans, CBZ affected spontaneous convulsive seizures in 2 out of 10 treated rats (responders), whereas the remaining animals (non-responders) did not show any difference when compared to untreated MP rats. Histological analysis revealed cortical thinning paralleled by robust staining of Fluoro-Jade+ (FJ+) degenerating neurons and diffuse tissue necrosis in CBZ-non-responder vs CBZ-responder rats. Data reported here suggest that MP rat model represents suitable experimental setting where to investigate mechanisms of CD-related drug-resistant epilepsy and to verify if modulation of seizures, with appropriate treatment, may reduce seizure-induced brain damage.

20.
Seizure ; 72: 54-60, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606703

RESUMO

PURPOSE: To define Stereo-EEG (SEEG) ictal and interictal patterns associated with different pathologies in a cohort of patients with drug-resistant focal epilepsy. METHODS: We retrospectively analyzed findings from 102 patient with epilepsy due to Polymicrogyria (PMG), Periventricular Nodular Heterotopia (PNH), Focal Cortical Dysplasia (FCD) type I, IIa, IIb and Hippocampal Sclerosis (HS). Ictal and interictal SEEG recordings were reviewed to describe Seizure Onset Zone (SEEG-SOZ) patterns and to define the Lesional and Irritative Zones. RESULTS: Five SEEG-SOZ patterns were identified: significant associations were found between low-voltage fast activity and PMG and between repetitive fast spikes bursts and FCD type IIa. A trend was found between fast activity and PNH, rhythmic sharp activity and FCD type I, repetitive fast spikes bursts and FCD type IIb, slow burst and HS. In 62 of the 102 patients, a complete surgical resection of the SEEG-SOZ was performed, and in 12 patients a partial resection was carried out to preserve eloquent areas. In 18 patients (15 with PNH) the SEEG-SOZ was thermo-coagulated. Seizure freedom was achieved in 58% of surgically treated patients and in 72% of those treated with thermocoagulation (mean ±â€¯SD follow-up 5.9 ±â€¯2.3 years). Seizure freedom after surgery was achieved in 84% of the patients with PMG, FCD I, IIa and IIb presenting with characteristic SEEG-SOZ patterns. With the exception of FCD type II, interictal activity was not sufficient to identify SEEG-SOZ boundaries. CONCLUSION: The study demonstrates that specific histopathologies correlate with particular neurophysiological patterns, reflecting lesion-specific seizure patterns in focal epilepsies.


Assuntos
Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/fisiopatologia , Técnicas Estereotáxicas , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA